VARIATIONS IN THE DIFFUSE ISM

Planck Collaboration XI (2014)

IRAS – 100 μm Planck HFI – 350 μm – 550 μm – 850 μm

 $E(B-V) = A_{B} - A_{V}$

Results for the diffuse ISM ($N_H < 3 \times 10^{20}$ H/cm²)

Results for the diffuse ISM ($N_H < 3 \times 10^{20} \text{ H/cm}^2$)

Gas-to-dust ratio variations (Reach et al. 2015)

- Planck-HFI + ARECIBO GALFA-21cm survey 11 clouds with N_H < 8×10^{20} H/cm²
- Variations in the gas-to-dust ratio
 - → from cloud to cloud
 - \rightarrow within individual regions

VARIATIONS TOWARDS/IN THE DENSE ISM

Far-IR/submm emission

Planck Collaboration XXV (2011) : Taurus

Far-IR/submm emission

🐞 Roy et al. (2013) : Orion A

For regions with $1.5 \times 10^{22} \le N_H \le 5 \times 10^{22} H/cm^2$:

 \rightarrow far-IR opacity increases : $\sigma_{250\mu m} \propto N_{H}^{0.28}$

→ temperature decreases

Scattered light: visible to mid-IR

- Many dense clouds bright at short wavelength
 - → visible
 - → near-IR, labelled cloudshine
 - → mid-IR, labelled coreshine
- Solution Andersen et al. (2013) + Andersen et al. (2014) → grains with sizes up to 1 μ m

→ common N_H threshold for 3.6 µm scattering and water ice

