Characterization of exoplanet atmospheres with the JWST

MIRI GTO AIM

Pierre-Olivier Lagage Pascal Tremblin Dan Dicken René Gastaud Alain Coulais

P.O. Lagage et al., IAS, June 9 2017

esa Status - Hardware **NS**

The instruments are now installed at the back of the telescope.

From a telescope to a telescope with its instruments!

Integration of the payload with the 4 JWST

module (ISIM)

instruments

JWST workshop - ESAC - 26-29 September 2016

Credit for the images: NASA/Chris Gunn

Instruments +

telescope = **OTIS**

Yonega Space Agency

Payload module at JSC

Credits: NASA/Chris Gunn

JWST's payload module (telescope + instruments = OTIS) just arrived to NASA's Johnson Space Center

JAMES WEBB SPACE TELES

In parallel, the integration of the spacecraft and the sunshield continues at Northrop-Grumman's premises in California.

Forward Sunshield Unitized Pallet Structure Attached to the Spacecraft Bus (Northrop Grumman)

NEXT

- Shipped for final "Space like"
 Thermal Cryo Vacuum tests early 2017 (@ JSC, Houston)
- Late 2017 shipped JSC to Space Park, California for final S/C integration
- Ship 2018 to Kourou for Ariane 5 Launch in Oct 2018.

Still on track for a launch mid October 2018

C esa

200 letters of intent

JWST DD-ERS Science Categories (Notices of Intent)

From Nicole LEWIS STScI JWST project scientist

From Nicole LEWIS STScI JWST project scientist

Total of 3,665 Named Investigators/Collaborators Average of 18 Scientists per Team Largest Team is 119 Investigators 2,379 Unique Investigators/Collaborators 477 New User Investigators/Collaborators

JWST Director's Discretionary Early Release Science Program: Notice of Intent PIs and Co-PIs

MIRI THE JWST instrument covering the 5 – 28 microns range

Adapted from STScI

MIRI European

Consortium

	WP2 : Preparation of JWST observations	Date	People in charge	Deliveries
1	Improvement of the MIRI observation simulator: - add simulated disk observations with the coronagraph - other improvements necessary for our programs	2016	<u>R. Gastaud,</u> P. Bouchet, A. Coulais, PO. Lagage, E. Pantin	Software + upgrade of the user manual
2	Data reduction pipeline (imager): - Providing data reduction algorithms to the STScI - Implement/test the STScI standard pipeline at Paris-Saclay - High level pipelines not implemented by STScI	2016 2017-2019 2016-2017	P. Bouchet, K. Dassas A. Abergel, A. Coulais, D. Dicken, R. Gastaud, PO. Lagage, E. Pantin, PhD + C. Coussou	Software, Documentation, Test reports Software & documentation
3	Exoplanet specifics: 1) MIRI Detector test campaings at JPL (one per year); Definition, participation, data reduction and interpretation. 2) Specific data pipeline	2016-2018	D. Dicken, P. Bouchet, A. Coulais, R. Gastaud, PO. Lagage +collaboration with JPL and MPIA	Test report
	 Member of the STScI WG to specify data pipeline for long observations (mainly exoplanet transit observations) 3) Data challenges: 	2016-2017	D. Dicken, P. Bouchet, A. Coulais, R. Gastaud, PO. Lagage. M. Ollivier +collab. (STScI and MPIA, SRON)	Technical note
	 data reduction, retrieval techniques benchmarking pipeline Improvement following the data challenge results 	2017-2018	PO. Lagage P. Bouchet, A. Coulais, R. Gastaud, P. Tremblin, E. Pantin, PhD + STScl, MPIA, SRON,	Document with results 1 paper probably in PASP Software and associated documentation

Dan Dicken et al.

Description	Date	People in charge	Deliveries
1 Benchmarking of atmospheric exoplanet	2016	P. Tremblin . P-O. Lagage +	1 paper (ApJ)
models		MIRI consortium exoplanet	
		modeling group	
2 Simulate the expected effects of composition	2016-2017	P. Tremblin, PO. Lagage +	At least 2 papers (ApJ or A&A)
variations (e.g., C/O ratio) for different scenarii		student at UCL	
of planet formation in disks, for direct imaging			
and for the exoplanets transiting			
3 Implement of clouds in the ATMO model	2017-2018	P. Tremblin, postdoc	1 paper (ApJ or A&A)
4 Development of 3 D models from the	2016-2018	S. Fromang,	1 paper (ApJ or A&A)
dynamico code: Post-processing of 3D models		P. Tremblin + postdoc	
with ATMO to produce 2D maps of the			
atmosphere transmission spectra, study of			
simple clouds prescriptions.			
5 Analysis of the first JWST exoplanet	2019	P.O. Lagage, PhD (of WP2),	At least 1 paper (Nature or Science)
observations in ERS and in GTO		S. Fromang, M. Ollivier,	
		P. Tremblin and international	
		collaborators	

Requested funding : 1 postdoc for tasks 3 and 4 and a participation (63 K€) to a meso-machine

1 post-doc : Giuseppe Morello

6.4.1 WP2

PhD : "Exoplanet atmosphere characterization with the JWST" (2017-2020)

- 18 months: preparation to the exploitation of the observations of exoplanets with MIRI. During this first part, he/she will get familiar with the targets to be observed with MIRI (GTO and ERS), with the scientific objectives of the MIRI exoplanets observations, with the MIRI instrument itself (running the instrument simulator), with the data reduction. He/she will participate in exoplanet data challenges conducted prior to the JWST launch. He will participate in the 2018 detector test campaign and will reduce the data concerning exoplanets. Then, beginning of 2019, he/she will participate in the analysis of commissioning data. He/she will go to at least one conference a year and participate in summer schools.
- 18 months: scientific exploitation of JWST: data reduction and interpretation (retrieval) of observations of the
 exoplanet atmospheres available from the Early Release Science program and for the MIRI Guaranteed time
 Observations. He/she will especially be in charge of the measurement of the C/O ratio in relation with the
 planet formation in disk (making the link between exoplanets and disks). He will write papers and show the
 results in conferences. He/she will also participate in the preparation of open time proposals.

The PhD student, supervised by P.-O. Lagage (SAp) and M. Ollivier (IAS), will be based at SAp but will frequently go to IAS. He/she will benefit from an excellent environment with, next door, MIRI instrument specialists, MIRI data reduction specialists, next building, exoplanet modeling specialists and at IAS, specialists in dust and disk modeling, in exoplanet and data reduction. He/she will be member of the exoplanet working group of the MIRI European consortium, where he/she will find complementary expertise to that present at Paris-Saclay, especially for the use of the medium resolution spectrometer (SRON, MPIA Heidelberg, ATC UK). He/she will also be integrated in the network of collaborators with who we are coordinating the exoplanet GTO observations (T. Green (NASA Ames); C. Beichman (IPAC, US); R. Doyon (Canada); R. Soummer (STSCI, Baltimore), ...).

Marine Martin-Lagarde

GTO MIRI : large program of characterization of exoplanet atmosphere : 115 h.

June 🤇

All the modes will be used for exoplanets observations in GTO

MIRI European

Consortium

pear and reappea ected light from planet thermal radiation and **Orbital Phase Variations Transiting Planets** Secondary Eclipse (function of wavelength) See stellar flux decrease **Transit**

Selection sources: Giant exoplanets

Three criteria:

- detected by SPITZER,
- brightness of the star fainter than a K mag of 7 (for saturation possible issues),
- high Signal over Noise ratio (>5 for LRS) during one transit or eclipse.

Fifty sources met the criteria when observed in emission

Among these, a dozen have also a >5 S/N transmission spectra in one transit.

1 1. . .1.	• 	5 a.) 1	T.II 5			•			8 7 19						to the Pre-2 ant	11	Totala Totala Delle 7 Del	1010 2001	Road and Road and Road and	1110 200
···· ···																				
1	M3.8	1 ,3	•••	8 ,31	1,639	•••••	•••••	8,7838		1,6	.,	1,13	875	13,83	8,855	131	337	1.00		4,4
philosofter?	WO.00	ŝ	≣			•••••		3,8638	8,835			1,41	373	19,38		183	33	8 ,3	11	•,•
	•	•,•		1 ,33			8,81411	8,8768	a,a3	6,4	1 ,338	3,61	842	a,a3	8,847	143	646	- 60	340	10
philosofta.2		•		ı, u	8,737			1,0040	a,a3a	•,•	8 ,171			31,64	3,477	23				
philosofta 2	c38	3,3		1,71	3,843		8.8383	a, 46 au	a,a14	4,3	8,143	1,82		16,86	8,364	22		1,4	38	8,8
philametra 2		4,2		8,24	4,448			3,8498	8,824	2,6	8,381	3,38	282	14,88	8,883	24	38	4,4	37	8,2
				::	3,433			;::::	1333	13	1,111	33	111	2.61			246 176	1.1		8.3 8.1
																		-		_
l	WI.8	•		1,41	3,336	•••••	•••••	1,9181	8,844	13,4	8,374	4,0	684	7,83	1,11	••	817	20		13,1
, 1.1	۳	×.0	•••	1,44	3,648	8,16168	•••••	1,0004	8,87	33,3	8,38	4,17	***	13,13	1,11 3	28		6.6	384	2,5
	E1	۹,۵		8,29	4,338	•••••		3,400	1,111	18,5	ı,ıı	6,08		4,66	1,111			- 88	398	2,0
		,		8,2	4,000	•••••	•••••	3,3978	1,114	36,7	8,247	4,38		13,38	8,168	••	363	3,3	124	1,2
••••																				
E)	MB.1	P-16,0		8,31	3,885			1,1411	33,7				461		143,338				•	
•				1,39	4,002			3,946	63,8			10,44	1474		1.111	-	3	1.1	643	3.1
		8,2	•••	8,37	13,713	1.13		3,8468	63,1	•••••	8,783	4,45		•••••	8,844	183	•		133	1,0
		4,4		1,42	1,218			3,7663	37,38	8788,1	1,05	13,38	3433		a,ana	143	13			1.6
		I																		
	E1-E3	•,•		. ,	3,314	•••••		1,8878	1,138	361,6	1,138	13,49		31,97	8,617	24	an a	6,6	3344	24,8
T	CO 10	۰,•		1,84	3,876			3,3488	8,368		1,1 13	a,43	1634	13,43	8,173	78		3,6	463	φ
465 . I		6,5	6117	1, IA	3,838	•••••	•••••	3, 1111	8,214	336,9	1,38	18,14	1489	4,27	8,376	26		18,2	1933	38,3
		2,2		1,84		8.4338			4,04	1387,3	1,883	0,01		183,34	8,04	24	19	8,3	38	8,3
		13		1,13	.,	•••••		3,0004	1,83	337,3	1,001	17,83		18,78	a,aa:			3,8	4383	6,2
				•.•	1,743	•••••		3,3678	3,87	1124,4	1,0	16,83		41,82	1,117	314	334	1,6	4344	
		4,5		1,12	4,468			3,8888	8,838	166,8	1,319	14,42	1333	2,84	8,837	114		2,8	1468	10,0

Selecting exoplanets with Teff < 1000K

MIRI European Consortium

P.O. Lagage et al., IAS, June 9 2017

Important to have a broad wavelength coverage

An example:

→ Observe a limited number of targets but with full wavelength coverage

We end up with 9 targets :

6 giant exoplanets HAT-P-12 b HAT-P-19 b, WASP-80 b, HAT-P-20 b, WASP-10 b, WASP-8-b

with masses ranging from 0.21 to 3.1 Jupiter mass and a log g from 2.6 to 4.

20 M ...

4.5

=0.15

4.0

=0.2

5.0

3.0

3.5 log₁₀(g) (cgs)

Imaging observations for Super-Earth and Earth mass planets

Feasible for GJ 1214 b

S/N of about 10 (BB) in 1 eclipse

for filters F1130W to F2550W

Pass	
band	
<u>Δλ (μm)</u>	
1.2	
2.2	_
2.0	
0.7	
2.4	
3.0	
3.0	
5.0	_
4.0	-
	Pass band Δλ. (μm) 1.2 2.2 2.0 0.7 2.4 3.0 3.0 5.0 4.0

MIRI European

Consortium

Deming et al. 2009

For **GJ 1132 b**

S/N of about 3 (BB) in 1 eclipse

But time of the eclipse?

P.O. Lagage et al., IAS, June 9 2017

GTO Imaging observations of Trappist 1 b

Green = to be observed during MIRI-EC GTO	Obs mode	Spectral type Star	K mag star (mag)	Orbital period (d)	Semi mjr axis (au)	transit duration (hours)	Mass Planet (Mjup)	Mass Planet (Mearth)	Radius Planet (Rjup)	Radius Planet (Rearth)	Equilibrium Temp Planet (K)	Star N/S with a noise floor at 50 ppm (@ 7 µm)	Amplitude Transit in ppm (@7 μm)	SNR Transit	Contrast Eclipse in ppm (@ 7 mu)	SNR Eclipse
Low mass exoplanets (M <10 Earth masses)																
Proxima b	Filter 18 microns,			1.186				0,0			350					20
Trappist b,c,d	Filter 18 microns,	M8		1.510848		0,7000				0.993	340					1.5

Search for therma emission of Trappist b (400 K) by looking for 5 transits with the 12.80 microns filter

S/B of 5 expected

In coordination with Tom Greene 5 transits with the 15.00 microns filter

MIRI European

Consortium

P.O. Lagage et al., IAS, June 9 2017

Transiting exoplanets

Observation ID number	Target name	Total time charged in h.	Comment/Collaboration
WRIGHT_0039	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0040	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0041	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0042	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0043	TRAPPIST-1 b	5,019	Eclipse MIRI filter F1280W
WRIGHT_0044	WASP-107 b	10,05	Transit MIRI LRS
WRIGHT_0045	HAT-P-12 b	8,033	Transit MIRI LRS
WRIGHT_0046	HAT-P-12 b	8,033	Eclipse MIRI LRS
WRIGHT_0047	HAT-P-12 b	8,03	Transit NIRSPEC
WRIGHT_0048	HAT-P-12 b	8,03	Eclipse NIRSPEC

67,3

For a transit time of 36 minutes

(slew time, stability detecteur, out of eclipse, 16% overvatory calibration, + 1h time constrain)

Characterisation of exoplanets detected by direct imaging

MIRI European Consortium

Young (typically a few tens of Million years) **Giant** (several Jupiter masses) \rightarrow still in the cooling phase \rightarrow Luminosity can constrain the planet formation theory At large distance from their star \rightarrow « uncontaminated » by the physical effects related to the proximity to the host star (high irradiation, tidal effect...)

All those detected from the ground (8 m class telescope) can be observed with JWST

 \rightarrow which will bring the **first ever** observations above 5 microns, and a

Not so numerous so far (especially if we limit to those with a « relatively » well known mass lower than about 13 Jupiter masses) : a dozen

So far only detected from ground-based observations

If the angular distance star – exoplanet is large enough (> 2-3 arcsec)

 \rightarrow spectroscopic observations

either MIRI Low resolution Spectrometer (LRS) or bright enough exoplanet MIRI Medium Resolution Integral field Spectrometrer (MRS)

Target list for spectroscopic observations : 7 objects

Instrun	nent information		Main p	ointing inform	nation				Exposure in	nformation	
Instrumen	Mode (Imaging, LRS,		Main coord	linates		٦	arget of		Elements		Total Photon Collection time (hrs) 0,494 0,541 0,494 1,041 0,494 0,541 3,369 0,541 0,494
t	MRS, Coronography)	Target Name	RA (J2000)	DEC (J2000)	Mosaicke	ToO?	Disruptive	Filter	Channel	Mask	Collection
		or Optional ID			d or sub-	Y/N	ToO? (Y/N)	(imaging)	(MRS)	(Coronagraphy	time (hrs)
					arrayed)	
					Area						
		2MASSW									
		J1207334-									
MIRI	LRS	393254 b	12 07 33.5000	-39 32 54.40		Ν	N				0,494
								F1280W,			
		2MASSW						F1500W,			
		J1207334-						F1000W,			
MIRI	Imaging	393254 b	12 07 33.5000	-39 32 54.40	74"x113"	Ν	N	F2100W			0,541
		2MASS									
MIRI	LRS	J2236+4751 b	22 36 24.75	47 51 39.7		Ν	N				0,494
MIRI	MRS	ROSS 458 AB c	13 00 41.73	12 21 14.7		Ν	Ν		ALL		1,041
MIRI	LRS	GU Psc b	01 12 35.04	17 03 55.7		Ν	Ν				0,494
								F1280W,			
								F1500W,			
								F1000W,			
MIRI	Imaging	GU Psc b	01 12 35.04	17 03 55.7	74"x113"	N	N	F2100W			0,541
MIRI	LRS	WD 0806-661B	08 07 14.675	-66 18 48.68		N	N				3,369
								F1280W,			
								F1500W,			
								F1000W,			
MIRI	Imaging	WD 0806-661B	08 07 14.675	-66 18 48.68	74"x113"	N	N	F2100W			0,541
	~ ~	PSO J318.5338-									
MIRI	LRS	22.8603	21 14 08.026	-22 51 35.84		N	N				0,494
								F1280W,			
								F1500W.			
		PSO J318.5338-						F1000W.			
MIRI	Imaging	22.8603	21 14 08.026	-22 51 35.84	74"x113"	N	N	F2100W			0.541
MIRI	LRS	HD 106906 b	12 17 53.1	-55 58 31	-	N	N				0,494

Working together with NIRCAM, NIRSPEC to cover MIRI and NIRSPEC wavelengths

MEDIUM RESOLUTION SPECTROSCOPY

MIRI European Consortium

IFU MEDIUM RESOLUTION SPECTROSCOPY 5-28.5 μm in 3 settings

 3 mechanism selected sub-spectra per channel with dedicated dichroic and gratings

	Sub-band A			
$\mu { m m}$	4.87 - 5.82	7.45 - 8.90	11.47 - 13.67	17.54 - 21.10
$\lambda/\Delta\lambda$	3320 - 3710	2990 - 3110	2530 - 2880	1460 - 1930
	Sub-band B			
$\mu { m m}$	5.62 - 6.73	8.61 - 10.28	13.25 - 15.80	20.44 - 24.72
$\lambda/\Delta\lambda$	3190 - 3750	2750 - 3170	1790 - 2640	1680 - 1770
	Sub-band C			
$\mu { m m}$	6.49 - 7.76	9.91 - 11.87	15.30 - 18.24	23.84 - 28.82
$\lambda/\Delta\lambda$	3100 - 3610	2860 - 3300	1980 - 2790	1630 - 1330

For bright objects

P.O. Lagage et al., IAS, June 9 2017

Target list for coronagraphic observations

# name	Observing mode	Collaboration	mass and incertainty (in Jup mass)	radius (in Jupiter radius)	semi_major_a xis (AU)	angular_dist ance (arcsec)	temperature
HR 8799 b	MIRI Coronagraph; 10,65; 11,40; 15.50 microns + Lyot 23 microns	Chas Beichman NIRCAM coranagraphic obs.	7 (-2/+4)	1,2 (+/-0.1)	68	1,725888	1000 (+/-100)
HR 8799 c			10 (+/-3)	1,3	42,9	1,088832	1000
HR 8799 d			10 (+/-3)	1,2	27	0,685279	1000
HR 8799 e	MIRI Coronagraph	NO MIRI EC time; MIRI JPL time (Gene); STSCI : NIRCAM	9		14,5	0,36802	1000
HD95086 b	MIRI Coronagraph; 10,65; 11,40; 15.50 microns + Lyot 23 microns	Chas Beichman NIRCAM coranagraphic obs.	5 (+/- 2)	1,3	55.7	0.6	1050 (+/-450)
GJ 504 b	MIRI Coronagraph; 10,65; 11,40; 15.50 microns		6 (+/-3) but may also be 30. In discussion with Rafael Garcia to better	0.96(+/- 0.07)	43,5	2,48 en moyenne	544 +/-10K
51 Eri b	MIRI Coronagraph	NO MIRI EC time; MIRI JPL time (Gene); STSCI : NIRCAM	2 (+10)	1	13.2 (+/-0.2)	0,45	700 (+/- 100)
HD 106906, disk	MIRI Coronagraph; 11,40; 15.50 microns	Chas Beichman NIRCAM coranagraphic obs.		1 assumed	650		

Simulation of coronagraphic observations of HR 8799 exoplanets

A. Boccaletti et al.

MIRI European

Consortium

C. Danielski et al. in preparation

Brown Dwarfs program

Brown dwarfs observations is part of the exoplanet program as we aim at making the link between exoplanets and brown dwarfs

Influence of higher gravity (log(g)) → different P-T profile; impact on

Lower gravitational settling in the Clouds; turbulence may also develop more efficiently at low gravity.

Green log(g)=4; Blue log(g)=5; Teff=500K. P. Tremblin, private comunication

 3 exoplanets (1 Giant gaseous, 1 intermediate Giant gaseous, 1 Earth mass) in transit (67 hours MIRI EC GTO; in coordination with Tom Greene for two of them) (+ 5 exoplanets in transit (77 hours MIRI Tom Greene GTO))

12 Exoplanets observed by direct imaging (40 hours MIRI EC GTO) MIRI coronographic observations (5), LRS (6), MRS (1) + 3 exoplanets Gene Serabyn (20 hours MIRI JPL GTO, corono)

In coordination with short wavelengths obs (NIRCAM GTO time; NIRSPEC GTO for MRS)

7 Brown Dwarfs (10 hours MIRI EC GTO) MRS observations In coordination/collaboration with NIRCAM, NIRSPEC, NIRISS GTO teams

